Truth
2018-06-16, post № 198
mathematics, programming, Python, #logic, #proposition calculus
Proposition calculus deals with statements and the relation between statements, where each of them can only be in one of two states; . Therefore, when working with finitely many connected propositions, one can algorithmically determine all possible truth values of all atomic and thus connected propositions.
Truth is command-line tool which was written to precisely perform those computations; computing a logical expression’s truth value. Download link: truth.py
A list of all supportet operators can be seen by invoking the tool with a --help
flag.
This project was inspired by Albert Menne’s Einführung in die Logik [1]; the operator syntax used is similar to his, translated to be 7-bit-ASCII-compatible.
Truth can be used to either verify universally true statements, e. g. tertium non datur and a property of the replication, verum sequitur ex quodlibet.
-(p&-p) <-> 1 , 1 <- p 1 0010 1 1 1 1 0 1 1001 1 1 1 1 1
Though not only absolute truth, but also complete relational equivalence between two expressions can be shown.
(p->q)|(r>-<s) <-> q|(r|s)&-(r&s)|-p 01 0 1 0 0 0 1 00 000 01 000 110 10 0 0 0 0 0 1 00 000 01 000 001 01 1 1 0 0 0 1 11 000 01 000 110 11 1 1 0 0 0 1 11 000 01 000 101 01 0 1 1 1 0 1 01 110 11 100 110 10 0 1 1 1 0 1 01 110 11 100 101 01 1 1 1 1 0 1 11 110 11 100 110 11 1 1 1 1 0 1 11 110 11 100 101 01 0 1 0 1 1 1 01 011 11 001 110 10 0 1 0 1 1 1 01 011 11 001 101 01 1 1 0 1 1 1 11 011 11 001 110 11 1 1 0 1 1 1 11 011 11 001 101 01 0 1 1 0 1 1 00 111 00 111 110 10 0 0 1 0 1 1 00 111 00 111 001 01 1 1 1 0 1 1 11 111 00 111 110 11 1 1 1 0 1 1 11 111 00 111 101
Complete contravalence can also be shown.
-(p/-p>-<0)|p->q<-r >-< p&-q&r 0 0110 1 0 101 01 0 1 001000 0 1101 1 0 110 01 0 1 111000 0 0110 1 0 101 11 0 1 000100 0 1101 1 0 111 11 0 1 100100 0 0110 1 0 101 01 1 1 001001 0 1101 1 0 010 00 1 1 111011 0 0110 1 0 101 11 1 1 000101 0 1101 1 0 111 11 1 1 100101
Footnotes
- ▲ Menne, Albert: Einführung in die Logik. Bern: Francke, 1966. (= Dalp-Taschenbücher; 384 D)