hp
toc

Truth

2018-06-16, post № 198

mathematics, programming, Python, #logic, #proposition calculus

Proposition calculus deals with statements and the relation between statements, where each of them can only be in one of two states; \vdash p\lor\lnot p. Therefore, when working with finitely many connected propositions, one can algorithmically determine all possible truth values of all atomic and thus connected propositions.

Truth is command-line tool which was written to precisely perform those computations; computing a logical expression’s truth value. Download link: truth.py
A list of all supportet operators can be seen by invoking the tool with a --help flag.
This project was inspired by Albert Menne’s Einführung in die Logik [1]; the operator syntax used is similar to his, translated to be 7-bit-ASCII-compatible.

Truth can be used to either verify universally true statements, e. g. tertium non datur and a property of the replication, verum sequitur ex quodlibet.

-(p&-p) <-> 1  ,  1 <- p
1 0010   1  1     1 1  0
1 1001   1  1     1 1  1

Though not only absolute truth, but also complete relational equivalence between two expressions can be shown.

(p->q)|(r>-<s) <-> q|(r|s)&-(r&s)|-p
 01 0 1 0 0 0   1  00 000 01 000 110
 10 0 0 0 0 0   1  00 000 01 000 001
 01 1 1 0 0 0   1  11 000 01 000 110
 11 1 1 0 0 0   1  11 000 01 000 101
 01 0 1 1 1 0   1  01 110 11 100 110
 10 0 1 1 1 0   1  01 110 11 100 101
 01 1 1 1 1 0   1  11 110 11 100 110
 11 1 1 1 1 0   1  11 110 11 100 101
 01 0 1 0 1 1   1  01 011 11 001 110
 10 0 1 0 1 1   1  01 011 11 001 101
 01 1 1 0 1 1   1  11 011 11 001 110
 11 1 1 0 1 1   1  11 011 11 001 101
 01 0 1 1 0 1   1  00 111 00 111 110
 10 0 0 1 0 1   1  00 111 00 111 001
 01 1 1 1 0 1   1  11 111 00 111 110
 11 1 1 1 0 1   1  11 111 00 111 101

Complete contravalence can also be shown.

-(p/-p>-<0)|p->q<-r >-< p&-q&r
0 0110 1 0 101 01 0  1  001000
0 1101 1 0 110 01 0  1  111000
0 0110 1 0 101 11 0  1  000100
0 1101 1 0 111 11 0  1  100100
0 0110 1 0 101 01 1  1  001001
0 1101 1 0 010 00 1  1  111011
0 0110 1 0 101 11 1  1  000101
0 1101 1 0 111 11 1  1  100101

Footnotes

  1. Menne, Albert: Einführung in die Logik. Bern: Francke, 1966. (= Dalp-Taschenbücher; 384 D)
Jonathan Frech's blog; built 2024/12/19 23:13:08 CET