# MMXVI

2016-12-01, post № 149

mathematics, #all days of December

The idea is to only use the year’s digits — preferably in order — and mathematical symbols $(+,-,\cdot,\sqrt{},\lfloor\rfloor,\lceil\rceil,\dots)$ to create an equation that evaluates to a specific day of the month.
The 0th of December, 2016 would, for example, be $2\cdot 0\cdot 1\cdot 6$, $2^0-1^6$ or $\lfloor\frac{2}{0+16}\rfloor$.

• $1=2\cdot 0+1^6$
• $2=\sqrt{20-16}$
• $3=(2+0)^{-1}\cdot 6$
• $4=2^{0+\sqrt{\sqrt{16}}}$
• $5=2\cdot 0-1+6$
• $6=2\cdot 0\cdot 1+6$
• $7=2\cdot 0+1+6$
• $8=2+0+\sqrt[1]{6}$
• $9=2+0+1+6$
• $10=2+0!+1+6$
• $11=-\lceil\sqrt{20}\rceil+16$
• $12=2\cdot (0!-1+6)$
• $13=-(2+0!)+16$
• $14=-(2+0)+16$
• $15=-(2\cdot 0)!+16$
• $16=2\cdot 0+16$
• $17=2^0+16$
• $18=2+0+16$
• $19=2+0!+16$
• $20=\lceil\sqrt{20}\rceil\cdot\sqrt{16}$
• $21=20+\lfloor\sqrt{\sqrt{\sqrt{16}}}\rfloor$
• $22=(2+0!)!+16$
• $23=(2+0!+1)!-\lfloor\sqrt{\sqrt{6}}\rfloor$
• $24=20+\sqrt{16}$
• $25=20-1+6$
• $26=20+1\cdot 6$
• $27=20+1+6$
• $28=2+0-1+\lceil\sqrt{6!}\rceil$
• $29=20+\lceil\sqrt{\lceil\sqrt{(1+6)!}\rceil}\rceil$
• $30=(2+0!+1)!+6$
• $31=\lceil\sqrt{\sqrt{\sqrt{\sqrt{20!}}}}\rceil +16$
Jonathan Frech's blog; built 2024/05/27 06:43:58 CEST