Recently, my stochastic professor introduced me to a problem he has been pondering for over two decades: on the two-dimensional integer lattice one shall flip a three-sided coin for each point and uniformly place one of three mirrors, , where denotes not placing a mirror. After having populated the world, one picks their favorite integer tuple and points a beam of light in one of the four cardinal directions. With what probability does the light fall into a loop, never fully escaping?

A project of epic proportions has come to a close. Yesterday, the 19th of April 2019, saw the first public release of my new programming language, krrp.

krrp is a functional, dynamic, interpreted and (theoretically) Turing-complete esolang implemented only using standard C. As such, on top of designing the actual language, any data structures, memory management and general auxiliary functionality deviating from the lacking capabilities offered by C had to be home-brewed and hand-crafted. A time-consuming task — I have been working on this language for the past year. However, it gives the language a certain purity, as its high-level functional approach rests firmly and closely on the state-changing, mutable and segmentation-faulting depths that are the C language.

Over two years ago, I wrote a basic 𝟥 ⨉ 𝟥-sudoku solver which uses both fundamental rule-based elimination and guessing to arrive at the solution. Revisiting the topic of computer-aided sudoku manipulation, I wrote a generalized sudoku generator (sudoku-generation.hs).