Conky Clock

2018-10-06, post № 204

art, ASCII, programming, Python, #ASCII art, #time

For a few months now, I have been a vivid user of the ArchLabs distribution which — in a recent release — added the system monitor Conky to display various pieces of information such as uptime, CPU usage and UTC time.

However, Conky does not statically produce a wall of text and plops it on your desktop; it periodically updates itself as to be able to display time-dependent information.
Furthermore, it allows to be fully configured through a simple ~/.config/conky/ArchLabs.conkyrc file.

I wanted to display a useful time-dependent piece of information which does not require user interaction of any kind and found it — an analogue ASCII-art clock.

Time smiley optional.

For installation, download conky-clock.py and add a ${exec python <chosen_path>/conky-clock.py} line to your conky configuration file.

Snippet #2

2018-09-22, post № 203

programming, #shell

cat /dev/urandom > /dev/null

Interpreting brainfuck in C

2018-09-08, post № 202

brainfuck, C, programming, #interpreter

Esoteric programming languages come in an astonishing magnitude of variety — golfing languages, Turing tarpits, obfuscation languages, one-time joke languages and plenty more. However, among all of them, brainfuck is by far one of the most intriguing to me — an elegant combination of syntactic brevity, apparent lack of functionality and the theorectical might of a Turing machine.
Combined with its seemingly trivially realizable implementation, I have implemented brainfuck in Python 2, a brainfuck flavour in Python 2, and even written an interpreter in DrRacket.
However, like Cristofani writes in their The Epistle to the Implementors, writing a satisfactory brainfuck interpreter is no easy task.
Therefore I have designed another brainfuck command-line interpreter, written in pure C (brainfuck.c).

Key features of this implementation are a large tape size, source code pre-processing — instruction condensing and loop matching —, apt command-line flags and C execution speed.
For further detail on the interpreter’s usage, compile the interpreter (e. g. gcc -O2 brainfuck.c -o brainfuck) and run ./brainfuck -h.

To better demonstrate brainfuck’s true power, I wrote a non-Kolmogorov-complexity program; a palindrome tester.

[ A palindrome tester written in brainfuck. ]
[ Jonathan Frech, 21st of August 2018.      ]
[ Tape layout: (STR ... STR NUL FLG ACC)    ]

,[>,]             read in STR
>+                set FLG to true
<<<[              while STR is of length at least two
 [<]>             go to the first byte
 [[>]>>+<<<[<]>-] transfer first byte to ACC
 >[>]<            go to last byte
 [->>>-<<<]       subtract last byte from ACC
 >>>[             if ACC is not zero
  <[-]            set FLG to false
  >-]             clear ACC
 <[<+>-]          move FLG over
 <<<<             go to last byte
]>>>.             output FLG
% echo ",[>,]>+<<<[[<]>[[>]>>+<<<[<]>-]>[>]<[->>>-<<<]>>>[<[-]>-]<[<+>-]<<<<]>>>.\!existence" > palindrome.b
% ./brainfuck -x palindrome.b
00000000: 00                                       .               

% echo ",[>,]>+<<<[[<]>[[>]>>+<<<[<]>-]>[>]<[->>>-<<<]>>>[<[-]>-]<[<+>-]<<<<]>>>.\!hubbibbuh" > palindrome.b
% ./brainfuck -x palindrome.b
00000000: 01                                       .
Jonathan Frech's blog; built 2021/04/16 21:21:49 CEST